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Abstract

In this paper, o parametric complex Fourier se-
ries based model (FSBM), an extension of the real
FSBM proposed by Chi, for or as an approximation to
an arbitrary nonminimum-phase complex linear time-
invariant (LTI) system is proposed for statistical signal
processing applications where signals and LTI systems
of interest are complex. Based on the proposed complez
FSBM, a complex linear prediction error (LPE) filter
is presented along with the Cramer Rao (CR) bound
for the case of finite Gaussian measurements. Then an
MP-AP algorithm is presented for the estimation of the
complex FSBM parameters followed by some simula-
tion results for channel identification and equalization
in communications.

1. Introduction

Chi [1,2] proposed a real parametric nonminimum-
phase Fourier series based model (FSBM) for or as
an approximation to any arbitrary nonminimum-phase
linear time-invariant (LTI) systems. This model is ap-
plicable in a variety of statistical signal processing ar-
eas such as system identification, deconvolution and
equalization, and spectral estimation as long as the
signal of interest is real. However, in some applica-
tions both signals and LTT systems of interest are com-
plex. For instance, in digital communications, sym-
bol streams of complex finite alphabet are transmitted
through complex Rayleigh fading multipath channels,
and both the identification of complex channels and
the detection of complex symbol streams are crucial
to the design of the optimal receiver. This paper ex-
tends Chi’s real nonminimum-phase FSBM to the case
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of complex LTI systems so that the proposed complex
FSBM can be applied in communication signal pro-
cessing (e.g., equalization, channel identification and
multiuser detection).

2. Nonminimum-phase complex FSBM

The proposed complex nonminimum-phase FSBM
for a complex LTI system h(n) is defined as the follow-
ing frequency response

= Huvp(w) - Hapr(w) (1)

where Hyp(w) is a causal minimum-phase complex
FSBM given by

H(w)

Hyp (w) = exp {Z lar + jax] e_jwk} (2)

k=1
and Hap(w) is an allpass complex FSBM given by

q

Hap(w) =exp { Z [bk sin(kw) + by, cos(kw)] } (3)

k=1

where ag, ag, by and by, are real. Note that hyp 0)=1
and that the proposed complex FSBM given by (1)
reduces to the real FSBM [1,2] when @ = 0 in (2) and

by =0 in (3) for all k.

The complex cepstrum of the complex FSBM (in-
verse Fourier transform of In H(w)), that can be used
in deconvolution [3], can be easily shown to be

h(n) = hup(n) + hap(n) (4)

where hyp (n) and hap (n) are the complex cepstra of
Hyp(w) and Hap(w), respectively, as follows:

TLMP(n) — { an + JGn, 1 S n Sp (5)

0, otherwise



(=bn+3bn)/2, 1<n<q
(b—n +jb—n)/2a —g<n< -1 (6)
0, otherwise

hap(n) =

The proposed complex FSBM given by (1) shares
the following characteristics of the real FSBM summa-
rized as follows:

(C1) Both the complex FSBM H(w) and the inverse
system 1/H(w), that can be nonminimum phase
or noncausal, are guaranteed stable since they are
continuous functions of w with period of 27.

(C2) The complex FSBM given by (1) is called MP-AP
decomposition. Other equivalent complex FSBMs
can be obtained from either (1) or (4). For in-
stance, with h(n) = hy (n)+he(n) where h (n) and
o (n) are the causal part and anticausal part of
l~L(n), respectively, one can obtain minimum-phase
and maximum-phase (MN-MX) decomposition for
the complex FSBM that may be suitable for cer-
tain needs [3].

3. Estimation of FSBM parameters

Assume that we are given a set of data z(n) modeled
as

z(n) = u(n) * hn) = Z h(k)u(n—k) (7)

k=—00

where u(n) is a complex independent identically dis-
tributed (i.i.d) random sequence with zero mean and
h(n) is a complex FSBM given by (1). Only with z(n),
we desire to estimate the FSBM parameters including
minimum phase FSBM parameters ay and a; and all-
pass FSBM parameters by and by.

3.1. Estimation of minimum phase FSBM
parameters

The estimation of a; and ay is through a complex
linear prediction error (LPE) filter (a complex Wiener
filter) Vp(w) using the causal minimum-phase FSBM
as follows:

Vp(w) =exp {Z [ok + jug] e_jwk} (8)

k=1

where a3, and ay are real. The optimum Vp(w) is ob-
tained by minimizing

e(p) = Efle(n)|’] 9)

where
e(n) = z(n) *vp(n) = z(n) + Z vp(k)z(n — k) (10)
k=1
It can be shown that
- 1
Vo(w) = —— 11
P( ) HMP (LU) ( )
or & = —ay, and & = —ay, for all 1 <k < p, and
therefore the optimum
e(n) = un) x hap(n) (12)

It can be shown that when data z(n) are Gaussian

and finite, both &y and 5;; are approximate maximum-
likelihood estimates with uniform CR bounds as fol-
lows:

where N is the number of measurements z(n). More-
over, the Akaike Information Criteria (AIC)

AIC(k) = 2N Ine(k)] + 2k (15)

can be used to estimate the order p. The optimum 7 is
the integer such that AIC(k) is minimum for & = p.

3.2. Estimation of allpass FSBM parame-
ters

Assuming that z(n) is non-Gaussian, the allpass
FSBM parameter by and by can be estimated by fur-
ther processing the optimum e(n) by an allpass FSBM
as follows:

Gq(w) = exp {j Z [,Bk sin(kw) + Bp cos(kw)] } (16)
k=1

The optimum G,(w) is obtained by maximizing the
objective function [4]

1(g) = |Cm{y(m)} (17)

where Cpr{y(n)} is the Mth-order (M > 3) cumulant
of y(n) and
y(n) = e(n) * g4(n) (18)
It can be shown that the optimum
~ 1
G,(w)=——
q( ) HAP (w)

where 7 and ¢ are unknown constants.

. edwT+e) (19)



Chi’s cumulant variation rate (CVR) [2] defined as

In(k) — n(k —1)|
CVR(k) TR 100%  (20)
can also be used for the estimation of the order gq. The
optimum ¢ is the smallest integer such that CVR(k) is
below a threshold for all k& > ¢.

3.3. FSBM parameter estimation algorithm

The preceding estimation of Hyp(w) and Hap(w)
leads to an MP-AP algorithm for the estimation of the
FSBM H (w) with finite data z(n) as follows:

MP-AP ALGORITHM:

(51) Find the LPE filter V,(w) (a minimum-phase
FSBM) by minimizing (p) given by (9). Then
Hyp(Ww) = I/Vp(w) and save the optimum e(n)
that is also an amplitude equalized signal.

(52) Find the optimum G4(w) (an allpass FSBM) by
minimizing 7(q) given by (17). Then Hap(w) =
1/ @q (w) and the optimum y(n) is the deconvolved
signal.

Two worthy remarks in using the proposed MP-AP
algorithm are as follows:

(R1) Second-order and higher-order cumulants used in
e(p) and 7(q), respectively, can be replaced by the
associated sample cumulants. When the FSBM is
known to be minimum-phase, the (S2) is redun-
dant; when the FSBM is known to be allpass, the
(S1) is redundant.

(R2) When the FSBM order (p, ¢) is unknown, the es-
timation of p using AIC(k) and the estimation of
g using CVR(k) can be included in (S1) and (52),
respectively.

Iterative gradient type optimization algorithms are
needed in both (S1) and (S2) for finding the minimum
and maximum of the highly nonlinear functions &(p)
and 7(q), respectively. At each iteration, the compu-
tations of e(n) and y(n) can be efficiently performed
using FFT, and it can be easily shown that

Oe(n)/0ar, = e(n—k) (21)
Oe(n)/0a, = je(n—k) (22)
By(n)/0By = ~(yn+k)—yn—k) (23)

2
/0B, = Lyn+k)+yn—k) (24

that lead to a computationally efficient parallel struc-
ture in computing gradients of £(p) and 7n(g) with re-
spect to FSBM parameters.

4. Simulation results

Figures 1(a) through 1(f) show some simulation
results for blind channel identification and equaliza-
tion using the proposed MP-AP algorithm using the
proposed FSBM, Hatzinakos and Nikias’ tricepstrum-
based algorithm [3] as well as Shalvi and Weinstein’s
super-exponential algorithm [5], , for the case that the
driving input u(n) is a 16-QAM signal and the channel
h(n) is a complex noncausal FIR system taken from
[3]. One can see from these figures that the results
(thirty independent estimates of H(w)) for N = 4096
and SNR= 20 dB (additive white Gaussian noise) asso-
ciated with the proposed MP-AP algorithm (p=¢ =14
and M = 4) are better than the other two algorithms
due to smaller bias and variance for both magnitude
and phase estimates of H (w).

5. Conclusions

We have extended the results reported in [1,2] (real
nonminimum phase FSBM) to the case of complex non-
minimum phase FSBM including theoretical proofs for
the identifiability of FSBM parameters, channel iden-
tification and equalization algorithms, simulation re-
sults, and comparison with Hatzinakos and Nikias’ al-
gorithm [3] as well as Shalvi and Weinstein’s algorithm
[5]. The proposed complex FSBM and associated com-
putationally efficient MP-AP algorithm can be applied
to blind channel identification and equalization in dig-
ital communications.
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Figure 1. (a) Mean (dashed lines) and meanztone standard deviation (dotted lines) of thirty magnitude estimates
and (b) those of thirty phase estimates associated with the proposed MP-AP algorithm using the proposed FSBM,
together with the magnitude and phase (solid lines) of the system H(w); (¢) & (d) are the corresponding results
for the tricepstrum-based algorithm; (e) & (f) are the corresponding results for the super-exponential algorithm.



